
Goal:  Understand the 
contemporary QE view of  tropical 

convection  

 
•  Convective quasi-equilibrium (QE) for the 

interaction of convection and large-scale 
dynamics and thermodynamics* 

*Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994:  On large-scale circulations in 
convecting atmospheres.  Q. J. Roy. Meteor. Soc., 120, 1111—1143. 



Distinguishing two views on       
[or types of] convection 

1.  Large-scale (LS) processes generate CAPE which 
accumulates in the atmosphere until released 
through convective-scale processes. 

2.  LS generation of CAPE nearly balances 
consumption by convection, i.e., the generation and 
consumption processes are of comparable 
timescales. 



Type 1:  External/Triggered 

•  In this type of convection, the 
existence of CIN acts as a 
barrier to cumulus convection. 

•  Only sufficiently large 
perturbations in the vertical, or 
evolving low level conditions that 
relax the barrier, can generate 
convection. 

•  But unambiguously conditionally 
unstable profiles like the one 
schematically illustrated on the 
left have only been 
demonstrated over midlatitude 
continental areas. 

Figure by George Craig 



Convection as a heat source for the 
circulation[?] 

•  In the external view, the energy released by convection 
“drives” the LS flow. 
–  That is, the latent heat released typically exceeds the energy required to 

maintain the kinetic energy of LS motions against dissipation. 
–  Thus, latent heating leads to KE production. 

•  However, this energy conversion requires a positive correlation 
between heating and temperature. 
–  However, there is no reason a priori why this correlation must be 

positive.   
–  In fact, while LS motions in the Tropics are associated with latent heat 

release, the cumulus convective heating and LS radiative and adiabatic 
cooling are nearly in balance:  any residual (i.e., KE) is thus a small 
percentage of larger compensating terms.   



Type 2: Internal/Statistical equilibrium 
•  The underlying notion of the internal, or statistical equilibrium 

view of convection, is that the timescale of the small-scale 
chaotic cumulus convective process is comparable to the LS 
processes with which it interacts. 
 “If we are to be able to predict the evolution of large-scale circulation systems that interact 
strongly with convection, and to do so on a time scale appropriate to the larger scale 
system (and not to the individual convective cells), then there had better be a strong 
relationship between the statistics of the convection and the properties of the large-scale 
system. If such a relationship does not exist, we are not entitled to believe that the larger 
scale system is predictable on timescales appreciably longer than those of convective 
cells.” - K. Emanuel 

•  The tropical free troposphere is often observed to be close to 
moist adiabatic.  In the statistical equilibrium framework, 
convection is assumed to maintain the pervasive tropical 
moist adiabatic lapse rate and neutral stability of the tropical 
atmosphere. 

 



Akio Arakawa* 

“The 2010 Vilhelm Bjerknes Medal is awarded to 
Akio Arakawa in recognition of his pioneering and 
fundamental contributions to physically based 
discretisation techniques in atmosphere and ocean 
models and to representations of convective 
clouds in atmosphere models, and for his 
continuing work on bridging the gap between the 
resolved and unresolved scales in atmospheric 
general circulation modelling.” 

*Still going strong (age > 80 years) as a Professor Emeritus at UCLA 



Arakawa and Schubert (AS) 
•  Classic paper (published 1974), with the results used 

as the basis for many current generation convection 
schemes in models. 

•  Fastest energetic processes in convective clouds 
are:  

1)  conversion of (available) PE to KE 
2)  dissipation of KE 

•  Characteristic convective cloud timescales, e.g., the 
life cycle from development to decay,are of order 
hours, so the KE of a “cloud ensemble” in statistical 
equilibrium with the large-scale environment 
responds to changes in the large-scale conditions on 
similar timescales. 



Cloud population 



AS Overview:  Subensembles and work functions 
Consider a quantity λ that denotes a “subensemble” of convective clouds, 
characterized by a common attribute such as the altitude of the cloud tops.  If 
Mλ and Bλ represent, respectively, the vertical mass flux and buoyancy of the λ 
subensemble, then the time rate of change of energy “consumed” by the λ 
subensemble is: 

Here, the limits of integration are the altitudes of cloud bottom and top, Aλ is the 
cloud work function, and the subscript C denotes a “cloud-scale” process. 
On the other hand, we can express the rate of energy production per unit time 
by the LS conditions for a given λ subensemble as: 

Recall the definition of CAPE, which is of 
dimension [Bλdz] = E/mass.  Since [Mλ] 
is mass/time, the integral is E/time.  
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Here, Fλ is the explicit LS rate of energy production and Jλλʹ′ accounts for 
interactions between the λ and λʹ′ subensembles.  



Interaction terms 
Influence of vertical mass flux in λʹ′ 
subensemble clouds on λ clouds (top) 
and λ clouds on λʹ′  clouds (bottom)  

Influence of cloud-top detrainment 
of λʹ′ subensemble clouds on λ 
clouds.  Note for the interaction as 
shown, the effect of λ clouds on λʹ′  
clouds is zero, since the 
detrainment in the former occurs 
above the latter. Decrease cloud work function 

Increase cloud work function 



QE and AS 
The quasi-equilibrium (QE) hypothesis means that the total time rate of change 
of the cloud work function is zero, implying the rate of LS energy production is 
equal to its consumption at the convective scale, i.e., 
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where the integration kernel Kλλʹ′ is defined as: 

Given Fλ and a cloud model that determines Bλ, Mλ can be determined:  this is 
the basis of AS-type convection schemes used in models.  However, this 
determination is nontrivial, as it depends on the features of the cloud models 
and how they treat cloud microphysics. 



Observational confirmation of QE 

•   Figure from AS illustrating 
the time tendency of total 
cloud work function (y-axis) 
versus large-scale energy 
production (x-axis) from 
observations in the Marshall 
Islands (Yanai, 1973)  
•   For tropical conditions, net 
surface flux and column 
radiative cooling generate 
~4000 J kg-1 day-1, while 
CAPE values in the tropical 
atmosphere are typically 
below 1000 J kg-1. 



LS circulations in convecting 
atmospheres 

1.  Conditionally unstable conditions with 
appreciable CIN are unusual, especially in the 
Tropics. 

2.  CAPE is approximately invariant. 
3.  The invariance of CAPE has implications for the 

temperature of convecting atmospheres [next up] 
4.  However, it’s important to consider the small but 

nonzero response time of convection to large-
scale forcing, which is important in tropical 
waves. 



Relating ABL θe and cumulus convection 
Consider the CAPE defined as:                                    .  Using the definition of 
specific volume and transforming the integral to one over pressure [through 
hydrostatic equilibrium] gives: 

In a prior lecture, we related constant-pressure perturbations in parcel specific 
volume to perturbations in entropy via Maxwell’s relations.  Thus,   
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On the other hand, from the hydrostatic relationship, expressed in terms of 
geopotential: 
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ABL θe and cumulus convection (cont’d) 
Thus: 

We have assumed saturation entropy [or cplnθe] is equal to its ABL value and is 
further conserved following ascent within the convecting cloud. 

The above relationship, namely that temporal fluctuations in the “thickness” of 
the (strict) QE convecting layer are proportional to ABL fluctuations in moist 
entropy/equivalent potential temperature, is a fundamental result.  It implies that 
a positive perturbation in ABL θe produces a positive perturbation in thickness 
above the ABL (note: ΦEL - ΦLFC > 0 ).  Thus, to a large extent in the Tropics, 
predicting the response of ABL θe to, say, large-scale disturbances will 
determine the impact of such disturbances on convection. 

And: 
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What determines equilibrium subcloud (ABL) θe? 

Emanuel et al., 1994 
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Equilibrium subcloud θe increases with: 
1. Increasing SST [I.e., higher θes ] 
2. Increasing surface windspeed [I.e., higher w0] 
3. Increasing above subcloud layer equivalent potential temperature [I.e., higher θee] 
4. Increasing downdraft equivalent potential temperature [I.e., higher θed]  


